Home - Education Resources - NDT Course Material - Materials and Processes
 

Materials/Processes

Selection of Materials
Specific Metals
  Metal Ores
  Iron and Steel
  Decarburization
  Aluminum/Aluminum Alloys
  Nickel and Nickel Alloys
  Titanium and Titanium Alloys


General Manufacturing Processes

Metallic Components
Ceramic and Glass Components
Polymers/Plastic Components
Composites

Manufacturing Defects
Metals
Polymers
Composites

Service Induced Damage
Metals
Polymers
Composites
Material Specifications

Component Design, Performance and NDE
Strength
Durability
Fracture Mechanics
Nondestructive Evaluation

Physical and Chemical Properties

Physical properties are those that can be observed without changing the identity of the substance. The general properties of matter such as color, density, hardness, are examples of physical properties. Properties that describe how a substance changes into a completely different substance are called chemical properties. Flammability and corrosion/oxidation resistance are examples of chemical properties.

The difference between a physical and chemical property is straightforward until the phase of the material is considered. When a material changes from a solid to a liquid to a vapor it seems like them become a difference substance. However, when a material melts, solidifies, vaporizes, condenses or sublimes, only the state of the substance changes. Consider ice, liquid water, and water vapor, they are all simply H2O. Phase is a physical property of matter and matter can exist in four phases – solid, liquid, gas and plasma.

Some of the more important physical and chemical properties from an engineering material standpoint will be discussed in the following sections.

  • Phase Transformation Temperatures
  • Density
  • Specific Gravity
  • Thermal Conductivity
  • Linear Coefficient of Thermal Expansion
  • Electrical Conductivity and Resistivity
  • Magnetic Permeability
  • Corrosion Resistance