Home - Education Resources - NDT Course Material - Radiation

Radiation Safety

Background Information
Gamma Radiation
Health Concerns

Radiation Theory
Nature of Radiation
Sources of High Energy

Rad for Ind Radiography
Decay and Half-life
Energy, Activity, Intensity   and Exposure
Interaction with Matter
Measures Related to   Biological Effects

Biological Effects
Biological Factors
Stochastic (Delayed) Effects
  -Genetic Effects

Nonstochastic (Acute) Effects

Safe Use of Radiation
NRC & Code of Federal
Exposure Limits
Controlling Exposure
  -Time-Dose Calculation
  -Distance-Intensity Calc
HVL Shielding
Safety Controls

Survey Techniques

Radiation Safety Equipment
Radiation Detectors
Survey Meters
Pocket Dosimeter
Audible Alarm Rate Meters
Film Badges

Video Clips




A cataract is a clouding of the normally clear lens of the eye. A much higher incidence of cataracts was reported among physicists in cyclotron laboratories whose eyes had been exposed intermittently for long periods of time to relatively low radiation fields, as well as among atomic bomb survivors whose eyes had been exposed to a single high radiation dose. This shows that both chronic and acute overexposure of the eyes can lead to cataracts. Radiation may injure the cornea, conjunctiva, iris, and the lens of the eye. In the case of the lens, the principal site of damage is the proliferating cells of the anterior epithelium. This results in abnormal lens fibers, which eventually disintegrate to form an opaque area, or cataract, that prevents light from reaching the retina.

The cataractogenic dose to the lens is on the order of 500 rad of beta or gamma radiation. No radiogenic cataracts resulting from occupational exposure to x-rays have been reported. From patients who suffered irradiation of the eye in the course of x-ray therapy and developed cataracts as a consequence, the cataractogenic threshold is estimated at about 200 rad. In cases either of occupationally or therapeutically induced radiation cataracts, a long latent period, on the order of several years, usually elapsed between the exposure and the appearance of the lens opacity. The cataractogenic dose has been found, in laboratory experiments with animals, to be a function of age; young animals are more sensitive than old animals.