Home - Education Resources - NDT Course Material - Ultrasound
 

-
Introduction to Ultrasonic Testing

Introduction
Basic Principles
History
Present State
Future Direction

Physics of Ultrasound
Wave Propagation
Modes of Sound Waves
Properties of Plane Waves
Wavelength/Flaw Detection
Elastic Properties of Solids

Attenuation
Acoustic Impedance
Reflection/Transmission
Refraction & Snell's Law
Mode Conversion
Signal-to-noise Ratio
Wave Interference

Equipment & Transducers
Piezoelectric Transducers
Characteristics of PT
Radiated Fields
Transducer Beam Spread
Transducer Types
Transducer Testing I
Transducer Testing II
Transducer Modeling
Couplant
EMATs
Pulser-Receivers
Tone Burst Generators
Function Generators
Impedance Matching
Data Presentation
Error Analysis

Measurement Techniques
Normal Beam Inspection
Angle Beams I
Angle Beams II
Crack Tip Diffraction
Automated Scanning
Velocity Measurements
Measuring Attenuation
Spread Spectrum
Signal Processing
Flaw Reconstruction

Calibration Methods
Calibration Methods
DAC Curves
Curvature Correction
Thompson-Gray Model
UTSIM
Grain Noise Modeling
References/Standards

Selected Applications
Rail Inspection
Weldments

Reference Material
UT Material Properties
References

Quizzes

Piezoelectric Transducers

The conversion of electrical pulses to mechanical vibrations and the conversion of returned mechanical vibrations back into electrical energy is the basis for ultrasonic testing. The active element is the heart of the transducer as it converts the electrical energy to acoustic energy, and vice versa. The active element is basically a piece of polarized material (i.e. some parts of the molecule are positively charged, while other parts of the molecule are negatively charged) with electrodes attached to two of its opposite faces. When an electric field is applied across the material, the polarized molecules will align themselves with the electric field, resulting in induced dipoles within the molecular or crystal structure of the material. This alignment of molecules will cause the material to change dimensions. This phenomenon is known as electrostriction. In addition, a permanently-polarized material such as quartz (SiO2) or barium titanate (BaTiO3) will produce an electric field when the material changes dimensions as a result of an imposed mechanical force. This phenomenon is known as the piezoelectric effect. Additional information on why certain materials produce this effect can be found in the linked presentation material, which was produced by the Valpey Fisher Corporation.

Piezoelectric Effect (PPT, 89kb)   Piezoelectric Elements (PPT, 178kb)

The active element of most acoustic transducers used today is a piezoelectric ceramic, which can be cut in various ways to produce different wave modes. A large piezoelectric ceramic element can be seen in the image of a sectioned low frequency transducer. Preceding the advent of piezoelectric ceramics in the early 1950's, piezoelectric crystals made from quartz crystals and magnetostrictive materials were primarily used. The active element is still sometimes referred to as the crystal by old timers in the NDT field. When piezoelectric ceramics were introduced, they soon became the dominant material for transducers due to their good piezoelectric properties and their ease of manufacture into a variety of shapes and sizes. They also operate at low voltage and are usable up to about 300oC. The first piezoceramic in general use was barium titanate, and that was followed during the 1960's by lead zirconate titanate compositions, which are now the most commonly employed ceramic for making transducers. New materials such as piezo-polymers and composites are also being used in some applications.

The thickness of the active element is determined by the desired frequency of the transducer. A thin wafer element vibrates with a wavelength that is twice its thickness. Therefore, piezoelectric crystals are cut to a thickness that is 1/2 the desired radiated wavelength. The higher the frequency of the transducer, the thinner the active element. The primary reason that high frequency contact transducers are not produced is because the element is very thin and too fragile.