Home - Education Resources - NDT Course Material - Ultrasound
 

-
Introduction to Ultrasonic Testing

Introduction
Basic Principles
History
Present State
Future Direction

Physics of Ultrasound
Wave Propagation
Modes of Sound Waves
Properties of Plane Waves
Wavelength/Flaw Detection
Elastic Properties of Solids

Attenuation
Acoustic Impedance
Reflection/Transmission
Refraction & Snell's Law
Mode Conversion
Signal-to-noise Ratio
Wave Interference

Equipment & Transducers
Piezoelectric Transducers
Characteristics of PT
Radiated Fields
Transducer Beam Spread
Transducer Types
Transducer Testing I
Transducer Testing II
Transducer Modeling
Couplant
EMATs
Pulser-Receivers
Tone Burst Generators
Function Generators
Impedance Matching
Data Presentation
Error Analysis

Measurement Techniques
Normal Beam Inspection
Angle Beams I
Angle Beams II
Crack Tip Diffraction
Automated Scanning
Velocity Measurements
Measuring Attenuation
Spread Spectrum
Signal Processing
Flaw Reconstruction

Calibration Methods
Calibration Methods
DAC Curves
Curvature Correction
Thompson-Gray Model
UTSIM
Grain Noise Modeling
References/Standards

Selected Applications
Rail Inspection
Weldments

Reference Material
UT Material Properties
References

Quizzes

Transducer Testing

Some transducer manufacturers have lead in the development of transducer characterization techniques and have participated in developing the AIUM Standard Methods for Testing Single-Element Pulse-Echo Ultrasonic Transducers as well as ASTM-E 1065 Standard Guide for Evaluating Characteristics of Ultrasonic Search Units.

Additionally, some manufacturers perform characterizations according to AWS, ESI, and many other industrial and military standards. Often, equipment in test labs is maintained in compliance with MIL-C-45662A Calibration System Requirements. As part of the documentation process, an extensive database containing records of the waveform and spectrum of each transducer is maintained and can be accessed for comparative or statistical studies of transducer characteristics.

Manufacturers often provide time and frequency domain plots for each transducer. The signals below were generated by a spiked pulser. The waveform image on the left shows the test response signal in the time domain (amplitude versus time). The spectrum image on the right shows the same signal in the frequency domain (amplitude versus frequency). The signal path is usually a reflection from the back wall (fused silica) with the reflection in the far field of the transducer.

Other tests may include the following:

  • Electrical Impedance Plots provide important information about the design and construction of a transducer and can allow users to obtain electrically similar transducers from multiple sources.
  • Beam Alignment Measurements provide data on the degree of alignment between the sound beam axis and the transducer housing. This information is particularly useful in applications that require a high degree of certainty regarding beam positioning with respect to a mechanical reference surface.
  • Beam Profiles provide valuable information about transducer sound field characteristics. Transverse beam profiles are created by scanning the transducer across a target (usually either a steel ball or rod) at a given distance from the transducer face and are used to determine focal spot size and beam symmetry. Axial beam profiles are created by recording the pulse-echo amplitude of the sound field as a function of distance from the transducer face and provide data on depth of field and focal length.