Home - Education Resources - NDT Course Material - Ultrasound
 

-
Introduction to Ultrasonic Testing

Introduction
Basic Principles
History
Present State
Future Direction

Physics of Ultrasound
Wave Propagation
Modes of Sound Waves
Properties of Plane Waves
Wavelength/Flaw Detection
Elastic Properties of Solids

Attenuation
Acoustic Impedance
Reflection/Transmission
Refraction & Snell's Law
Mode Conversion
Signal-to-noise Ratio
Wave Interference

Equipment & Transducers
Piezoelectric Transducers
Characteristics of PT
Radiated Fields
Transducer Beam Spread
Transducer Types
Transducer Testing I
Transducer Testing II
Transducer Modeling
Couplant
EMATs
Pulser-Receivers
Tone Burst Generators
Function Generators
Impedance Matching
Data Presentation
Error Analysis

Measurement Techniques
Normal Beam Inspection
Angle Beams I
Angle Beams II
Crack Tip Diffraction
Automated Scanning
Velocity Measurements
Measuring Attenuation
Spread Spectrum
Signal Processing
Flaw Reconstruction

Calibration Methods
Calibration Methods
DAC Curves
Curvature Correction
Thompson-Gray Model
UTSIM
Grain Noise Modeling
References/Standards

Selected Applications
Rail Inspection
Weldments

Reference Material
UT Material Properties
References

Quizzes

Wave Interaction or Interference

Before we move into the next section, the subject of wave interaction must be covered since it is important when trying to understand the performance of an ultrasonic transducer. On the previous pages, wave propagation was discussed as if a single sinusoidal wave was propagating through the material. However, the sound that emanates from an ultrasonic transducer does not originate from a single point, but instead originates from many points along the surface of the piezoelectric element. This results in a sound field with many waves interacting or interfering with each other.

When waves interact, they superimpose on each other, and the amplitude of the sound pressure or particle displacement at any point of interaction is the sum of the amplitudes of the two individual waves. First, let's consider two identical waves that originate from the same point. When they are in phase (so that the peaks and valleys of one are exactly aligned with those of the other), they combine to double the displacement of either wave acting alone. When they are completely out of phase (so that the peaks of one wave are exactly aligned with the valleys of the other wave), they combine to cancel each other out. When the two waves are not completely in phase or out of phase, the resulting wave is the sum of the wave amplitudes for all points along the wave.


When the origins of the two interacting waves are not the same, it is a little harder to picture the wave interaction, but the principles are the same. Up until now, we have primarily looked at waves in the form of a 2D plot of wave amplitude versus wave position. However, anyone that has dropped something in a pool of water can picture the waves radiating out from the source with a circular wave front. If two objects are dropped a short distance apart into the pool of water, their waves will radiate out from their sources and interact with each other. At every point where the waves interact, the amplitude of the particle displacement is the combined sum of the amplitudes of the particle displacement of the individual waves.

With an ultrasonic transducer, the waves propagate out from the transducer face with a circular wave front. If it were possible to get the waves to propagate out from a single point on the transducer face, the sound field would appear as shown in the upper image to the right. Consider the light areas to be areas of rarefaction and the dark areas to be areas of compression.

However, as stated previously, sound waves originate from multiple points along the face of the transducer. The lower image to the right shows what the sound field would look like if the waves originated from just two points. It can be seen that where the waves interact, there are areas of constructive and destructive interference. The points of constructive interference are often referred to as nodes. Of course, there are more than two points of origin along the face of a transducer. The image below shows five points of sound origination. It can be seen that near the face of the transducer, there are extensive fluctuations or nodes and the sound field is very uneven. In ultrasonic testing, this in known as the near field (near zone) or Fresnel zone. The sound field is more uniform away from the transducer in the far field, or Fraunhofer zone, where the beam spreads out in a pattern originating from the center of the transducer. It should be noted that even in the far field, it is not a uniform wave front. However, at some distance from the face of the transducer and central to the face of the transducer, a uniform and intense wave field develops.

Multiple points of sound origination along the face of the transducer
Strong,
uniform
sound field

The curvature and the area over which the sound is being generated, the speed that the sound waves travel within a material and the frequency of the sound all affect the sound field. Use the Java applet below to experiment with these variables and see how the sound field is affected.